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1 Introduction

The kth root of a positive real number is very often irrational. This phenomenon has attracted many experts
and amateurs to produce beautiful mathematical results in this direction. History shows that the problem of
finding such irrational values, correct to a certain digit after the decimal point, has been analyzed in almost every
continent in the Middle Ages [1]. For example, work of Aryabhatta and Archimedes on finding the square roots
could be found respectively in [6] and [4]. The method we use nowadays to calculate the roots of integers is the
“Newton-Raphson” method. A brief overview of the historical development of this method can be found in [5].
Although this method is used as a strong tool in modern sciences it has some limitations and many improvisations
have been made to it. Today, finding an algorithm better than this and increasing its efficiency are two challenges
in numerical analysis.

While finding the kth root using “Newton-Raphson” method the graph of the function f (n) = n1/k, where k is
fixed, is considered. That is, the power is fixed and the base is a variable. A question generally arises what the
graph of the function f (n) = n1/(n+k) would look like? That is, the base is a variable as well as the power. We
find here that the graph of this function increases up to a certain point and then decreases. Interestingly enough,
this property is nothing but a generalization of the following old Indian Olympiad (RMO) problem:

If n ≥ 3, then n(n+1) > (n+1)n. (1.1)

In the second section, we derive some results through which we make a conjecture on the behavior of the
function, f (n) = n1/n+k. In the third section, we analyze this function and prove our conjecture. The discussion in
this paper gives hopes of finding an algorithm to determine the mth root of an integer n, where m ∈ N is the set of
natural numbers.
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2 Preliminaries

In this section, we study some inequalities that give hints about the mth root of n. Unless otherwise mentioned,
here we assume n,m,a,b,k ∈ N.

Theorem 2.1. For n ≥ m ≥ 2, nm > (n+1)m−1.

Proof. The right-hand side can be expanded using the binomial theorem for m ≥ 2,

(n+1)m−1 = nm−1 +

(
m−1

1

)
nm−2 +

(
m−1

2

)
nm−3 + · · ·+

(
m−1
m−2

)
n+1.

Now we can remove the term nm−1 from each side of the inequality. Then the inequality that we have to prove
reduces to,

(n−1)nm−1 >

(
m−1

1

)
nm−2 +

(
m−1

2

)
nm−3 + · · ·+

(
m−1
m−2

)
n+1. (2.1)

As n ≥ m,
n > (m−1),(m−2), . . . ,(m−1− (k−1)).

Hence nk >

(
m−1

k

)
. This implies nm−1 >

(
m−1

k

)
nm−1−k for all 1 ≤ k ≤ m−1. This means that each term on

the right-hand side of (2.1) is less than nm−1. Since n ≥ m, there are more or equal numbers of nm−1’s on the left
than the number of terms on the right. Hence we can say that for all n ≥ m, the inequality (2.1) holds. That is
nm > (n+1)m−1 for all n ≥ m ≥ 2.

Corollary 2.2. If n ≥ m ≥ 2 then, n1/(m−1) > (n+1)1/m.

Proof. Follows directly from Theorem 2.1.

Corollary 2.3. If a > b > k ≥ 1, then a1/(a−k) < b1/(b−k).

Proof. The proof can be divided into two cases: k = 1 and k > 1.
Case I: k = 1. Putting n = m = b in Corollary 2.2 we get, b1/(b−1) > (b+ 1)1/((b+1)−1) for any b ≥ 2. This
generates the following chain of inequalities

b1/(b−1) > (b+1)1/((b+1)−1) > (b+2)1/((b+2)−1) · · ·> (b+ k′)1/((b+k′)−1) · · ·

Now, b > k = 1 forces b to be at least 2. Also, a = b+ k′ for some k′. Hence the result.
Case II: k > 1. Let a = b+ k′, where k′ ∈ N. As b > k ≥ 1 we have the following inequalities,

b ≥ (b− k+1),(b+1)≥ (b− k+2), . . . ,(b+ k′)≥ (b+ k′− k+1).

Now applying Corollary 2.2 to each of these k′+1 inequalities produces another k′+1 inequalities. These are

b1/(b−k) > (b+1)1/(b−k+1),(b+1)1/(b−k+1) > (b+2)1/(b−k+2), . . .

(b+ k′−1)1/(b+k′−k−1) > (b+ k′)1/(b+k′−k),(b+ k′)1/(b+k′−k) > (b+ k′+1)1/(b+k′−k+1)

Now putting these together produces b1/(b−k) > (b+ k′)1/(b+k′−k) and hence we have the result.

Collecting the Problem 1.1, mentioned in the previous section, as a theorem here, (for proof see [2]).

Theorem 2.4. If n ≥ 3, then n(n+1) > (n+1)n.

Similar to Corollaries 2.2 and 2.3, we have the following corollaries.
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Corollary 2.5. If n ≥ 3 then, n1/n > (n+1)1/(n+1).

Corollary 2.6. If a > b ≥ 3 then a1/a < b1/b.

Lemma 2.7. For all n ≥ 4,

nn+1 >

(
n

n−2

)
n3 +

(
n

n−1

)
n2 +n.

Proof. On dividing both sides by n, the inequality becomes nn > n2(n(n−1)+2
2 ) + 1. Now let n(n−1)+2

2 ≥ n2.
This implies n(n− 1)+ 2 ≥ 2n2 or 2− n ≥ n2. Which is impossible for all n ≥ 4. So n(n−1)+2

2 < n2. That is
n2(n(n−1)+2

2 )< n4. Again let n2(n(n−1)+2
2 )+1 = n4. This will produce 2n2 −n3 +1 = n4. This is again absurd;

because for all n ≥ 4,2n2 < n3. Hence we can say that n4 > n2(n(n−1)+2
2 )+1. So nn ≥ n4 > n2(n(n−1)+2

2 )+1.

Theorem 2.8. For all n ≥ 4, nn+2 > (n+1)n+1.

Proof. The left hand side is equal to n.nn+1 = nn+1 + nn+1 + · · ·+ nn+1. The right hand side is (n+ 1)n+1 =

(n+1)(n+1)n = n(n+1)n +(n+1)n. Using the binomial theorem this can be expanded to get the following :

n
(

nn +

(
n
1

)
nn−1 +

(
n
2

)
nn−2 + · · ·+

(
n

n−1

)
n+1

)
+(n+1)n.

Now the inequality becomes,

nn+1 + · · ·+nn+1︸ ︷︷ ︸> nn+1 +

(
n
1

)
nn +

(
n
2

)
nn−1 + · · ·+

(
n

n−1

)
n2 +n+(n+1)n.

ntimes

Let’s rearrange the terms on the right-hand side into three distinct parts viz I, II, and III.(
n
2

)
nn−1 + · · ·+

(
n

n−3

)
n4︸ ︷︷ ︸

I

+

(
n

n−2

)
n3 +

(
n

n−1

)
n2 +n︸ ︷︷ ︸

II

+nn+1 +

(
n
1

)
nn +(n+1)n︸ ︷︷ ︸

III

For I, notice that nk >

(
n
k

)
, for all 2 ≤ k ≤ n. So nn+1 = nknn+1−k >

(
n
k

)
nn+1−k. Hence,

(n−4)(nn+1)>

(
n
2

)
nn−1 + · · ·+

(
n

n−3

)
n4

For II, using Lemma 2.7 ,

nn+1 >

(
n

n−2

)
n3 +

(
n

n−1

)
n2 +n

For III, by Theorem 2.4,

3nn+1 > nn+1 +

(
n
1

)
nn +(n+1)n

Combining the last three inequalities produces the desired result.

The following are now natural corollaries.

Corollary 2.9. If n ≥ 4 then, n1/(n+1) > (n+1)1/(n+2).

Corollary 2.10. If a > b ≥ 4 then a1/(a+1) < b1/(b+1).

Lemma 2.11. For all n ≥ 5,

nn+2 >

(
n+1
n−2

)
n4 +

(
n+1
n−1

)
n3 +

(
n+1

n

)
n2 +n+nn+1.
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Proof. The right-hand side is equal to,

(n+1)n(n−1)
6

n4 +
n(n+1)

2
n3 +(n+1)n2 +n+nn+1.

This is again equal to

((n+1)n(n−1)n4 +3n(n+1)n3 +6(n+1)n2 +6n+6nn+1)/6.

On multiplying both sides by 6 the inequality becomes,

6nn+2 > (n+1)n(n−1)n4 +3n(n+1)n3 +6(n+1)n2 +6n+6nn+1 or

6nn+2 > n7 +2n5 +3n4 +6n3 +6n2 +6n+6nn+1.

On removing n, it reduces to 6nn+1 > n6 +2n4 +3n3 +6n2 +6n+6+6nn.
Assume that for some n ≥ 5, 6+ 6nn ≥ 2nn+1. This will imply 3+ 3nn ≥ nn+1 or 3 ≥ nn(n− 3). Now

the last inequality is absurd for all n ≥ 4. Hence 2nn+1 > 6+ 6nn. Similarly assume that for some n ≥ 5,
6n2 +6n ≥ nn+1. Again this will imply 6n+6 ≥ nn or 6 ≥ n(nn−1 −6). This is also impossible, because for all
n ≥ 5, n(nn−1−6)≥ 5.(54−6)> 6. Hence we can say that for all n ≥ 5, nn+1 > 6n2+6n. Moreover for all n ≥ 4
we have, nn+1 ≥ n6 and nn+1 > 2n4,3n3.

Putting these pieces together, we get for all n ≥ 5,

6nn+1 > n6 +2n4 +3n3 +6n2 +6n+6+6nn.

That is

nn+2 >

(
n+1
n−2

)
n4 +

(
n+1
n−1

)
n3 +

(
n+1

n

)
n2 +n+nn+1.

This completes the proof.

Theorem 2.12. For all n ≥ 5, nn+3 > (n+1)n+2.

Proof. Like the proof of Theorem 2.8 we get the following equivalent inequality.

n.nn+2 > nn+2 +

(
n+1

1

)
nn+1 +

(
n+1

2

)
nn + · · ·+

(
n+1

n

)
n2 +n+(n+1)n+1

Now for 2 ≤ k ≤ n, k! = 2m for some m ∈N. But n > (n+1)
2 , for all n ≥ 3. Moreover nk−1 > n.(n−1) · · ·(n+1−

(k−1)). These implies

nk >
n+1

2
.n · · ·(n+1− (k−1))≥

(
n+1

k

)
for all 2 ≤ k ≤ n. Using this we can have nn+2 >

(
n+1

k

)
.nn+2−k. Applying this result to all 2 ≤ k ≤ (n− 3)

gives, (n−4)nn+2 >

(
n+1

2

)
nn + · · ·+

(
n+1
n−3

)
.

Now by Theorem 2.8 we have 3nn+2 > nn+2 +

(
n+1

1

)
nn+1 +(n+ 1)n+1. Moreover Lemma 2.11 gives,

nn+2 >

(
n+1
n−2

)
n4 +

(
n+1
n−1

)
n3 +

(
n+1

n

)
n2 +n. Now adding the last three inequalities gives, for all n ≥ 5,

n.nn+2 > nn+2 +

(
n+1

1

)
nn+1 +

(
n+1

2

)
nn + · · ·+

(
n+1
n−3

)
+

(
n+1
n−2

)
n4

+

(
n+1
n−1

)
n3 +

(
n+1

n

)
n2 +n+(n+1)n+1.

That is nn+3 > (n+1)n+2.
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Again we arrive at similar corollaries.

Corollary 2.13. If n ≥ 4 then n1/(n+2) > (n+1)1/(n+3).

Corollary 2.14. If a > b ≥ 4 then a1/(a+2) < b1/(b+2).

Major inequalities in this section can now be collected to see a general pattern.

• If a > b ≥ 2 and k ≥ 1 then a1/(a−k) < b1/(b−k) [Corollary 2.3]

• If a > b ≥ 3 and k = 0 then a1/(a−k) < b1/(b−k) [Corollary 2.6]

• If a > b ≥ 4 and k = 1 then a1/(a+k) < b1/(b+k) [Corollary 2.10]

• If a > b ≥ 5 and k = 2 then a1/(a+k) < b1/(b+2) [Corollary 2.13]

It is evident that for a negative k, if fk : (−k,∞)→ R be a function defined by fk(n) = n1/(n+k), where (−k,∞)

denotes all the natural numbers in the interval, then fk is a strictly decreasing function in (−k,∞). For k ∈ {0,1,2}
the function fk(n) = n1/(n+k) is a decreasing function after a point m, on its domain (k,∞). At this point, a
conjecture arrives naturally. That is if we increase the value of k to any natural number greater than 2, then also
fk(n) = n1/(n+k) is a decreasing function for all n ≥ m, where m is a unique integer in the domain of fk. We shall
prove this in the next section.

3 Properties of fk

We state below some basic theorems before proceeding further. Then we define fk not only for integers but also
for positive reals.

Theorem 3.1. Let f be a real function continuous on [a,b] and differentiable on the open interval (a,b), where
a,b ∈ R. Then

1. f is strictly increasing in [a,b] if f ′(x)> 0 for each x ∈ (a,b),

2. f is strictly decreasing in [a,b] if f ′(x)< 0 for each x ∈ (a,b),

3. f is a constant function in [a,b] if f ′(x) = 0 for each x ∈ (a,b).

Proof. See [3].

Theorem 3.2. If a function f is differentiable at a point, then it is also continuous at that point.

Proof. See [3].

Definition 3.3. For any k ∈ Z, q is defined to be the smallest positive integer such that q+ k ≥ 0. That is q = 1
for all k ≥ 0 and q =−k for all negative k.

Definition 3.4. Let fk : (q,∞)→ R be a function defined as fk(x) = x1/(x+k) where x ∈ R and k ∈ Z.

We have the following basic results about fk.

Lemma 3.5. The function fk is differentiable on the interval (q,∞).

Proof. It is known that eln(y) = y for all y ∈ R+. Now by the definition, fk(x) = x1/(x+k) > 0 where x ∈ (q,∞).

Hence fk(x) = x1/(x+k) = eln(x1/(x+k)) = e
ln(x)
x+k .This implies that fk is an exponential function. But all exponential

functions are differentiable. Hence fk is also differentiable.
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Lemma 3.6. The function fk is continuous on the real interval (q,∞).

Proof. Lemma 3.5 says fk is differentiable at each point of the interval (q,∞). Then by Theorem 3.2, fk is also
continuous at each point of the interval (q,∞). That is fk is continuous on (q,∞).

Before proceeding further we introduce another function gk. Properties of this function will turn out to be
very useful in understanding the properties of fk.

Definition 3.7. Let gk : [q,∞)→ R be the function defined as gk(x) = x+k
x − ln(x), where k is an integer.

Lemma 3.8. The function gk is differentiable on the interval [q,∞).

Proof. Can be verified easily using basic properties of limits (see [3]).

Lemma 3.9. The function gk is continuous on the interval [q,∞).

Proof. The proof follows from Lemma 3.8 and Theorem 3.2.

Lemma 3.10. The function gk is strictly decreasing in the interval [q,∞).

Proof. Let q < δ < ∞ be an arbitrary real number. Now by Lemma 3.8 and Lemma 3.9, gk is differentiable
on [q,δ ] and gk is continuous on (q,δ ). we note that d

dx(gk(x)) = − x+k
x2 , which is always negative. Hence by

Theorem 3.1, gk is strictly decreasing in [q,δ ]. This holds for all q < δ < ∞. This completes the proof.

Lemma 3.11. 1. If k ≥ 0, then there exists a real number c ∈ (q,∞) such that, gk(c) = 0; gk(x) > 0 for all
x < c and gk(x)< 0 for all x > c.

2. If k < 0, then gk(x)< 0 for all x ∈ (q,∞).

Proof. 1. For k ≥ 0, q = 1. Hence gk(q) = 1+k
1 − ln(1) = 1+k, which is positive. Now assume that the values

of gk are always positive. That is gk(x) > 0 for all x ∈ (1,∞). Now let y = e(k+2). Hence ln(y) = k+ 2.
Obviously y ∈ (1,∞). Now gk(y)> 0 implies, y+k

y − ln(y)> 0 that is k > y(k+1). This does not hold for
all k ≥ 0. Hence a contradiction. That is there exists some real number in (1,∞) for which gk(x)≤ 0. Now
using Lemmas 3.9 and 3.10 we get that there exist some c ∈ (1,∞) or (q,∞) for which the value of gk is 0.
The other two statements hold trivially as gk is a decreasing function.

2. For k < 0, q =−k. Hence gk(q) = −k+k
−k − ln(−k) =−ln(−k), which is always negative. As gk is strictly

decreasing in [q,∞) hence gk(x)< 0 for all x ∈ (q,∞).

Definition 3.12. For a non-negative integer k, the quantity c denotes the solution to the equation gk(c) = 0. By
Lemma 3.11 we know that such a c exists.

Definition 3.13. For an integer k, a positive real p is defined to be,

p =

{
c if k ≥ 0

q if k < 0

Theorem 3.14. The function fk is an increasing function in the interval (q, p) and is a decreasing function in the
interval (p,∞).
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Proof. From Lemmas 3.5 and 3.6 it is known that the function fk is differentiable as well as continuous on the
interval (q,∞). By using basic rules of differentiation we get d

dx [ fk(x)] = (x1/(x+k)( x+k
x − ln(x)))/(x+ k)2. It can

be noticed that this term is positive or negative according to the term x+k
x − ln(x), as x1/(x+k)/(x+ k)2 is always

positive. That is the sign of f ′k(x) depends on gk(x). Now we have the following cases.
Case I: Let k ≥ 0. Assume two real numbers ε and δ such that q < ε < δ < p. From Lemmas 3.5 and 3.6 we

have, fk is continuous on [ε,δ ] and differentiable on (ε,δ ). Now for all x ∈ (ε,δ ), x < p = c. Then by Lemma
3.11, gk(x)> 0. This implies f ′k(x)> 0. Hence by Theorem 3.1, fk is strictly increasing in [ε,δ ]. This holds for
all q < ε < δ < p, so we can say that fk is strictly increasing in (q, p).

Similarly we can assume real numbers ε and δ such that p < ε < δ < ∞. Then by Lemma 3.11, for all
x ∈ (ε,δ ), f ′k(x)< 0 as gk(x)< 0. Now applying Theorem 3.1 gives that fk is strictly decreasing in [ε,δ ]. This
holds for all p < ε < δ < ∞. Hence we can say fk is decreasing in (q,∞).

Thus, for all k ≥ 0, fk is strictly increasing in (q, p) and strictly decreasing in (p,∞).
Case II: Let k < 0. Then we have p = q. Then the interval (q, p) = (q,q) does not contain any real numbers.

Hence we only have to show that fk is decreasing in (p,∞) = (q,∞). By Lemma 3.11, for k < 0, gk(x)< 0 for all
x > q. Now let us assume two real numbers ε and δ such that q < ε < δ < ∞. Then f ′k(x)< 0 for all x ∈ (ε,δ ).
That is fk is strictly decreasing in (ε,δ ). Again this holds for all q < ε < δ < ∞. Hence we can say that fk is
strictly decreasing in (q,∞). This completes the second case and hence the proof.

4 Applications of fk

In this section, we discuss the application of the function fk and its properties. To start with, let’s explore a couple
of problems that can be solved easily using the p value as defined in the last section. (Numerical values shown
here and in the following sections, were computed using NumPy 2.1 and Python 3.10, truncated up to the last
decimal digit as displayed).

Example 4.1. Find the higher root out of 1000001/99998 and 1000031/100001 .

Solution. The two roots can be written as 100000100000−2 = f−2(100000) and 100003100003−2 = f−2(100003) .
By 3.14 we know that f−2 is strictly decreasing in (p,∞), where p = 1. Hence it can be easily concluded that
f−2(100000)> f−2(100003), i.e. 1000001/99998 > 1000031/100001. The exact numerical values of the roots are
given below for verification.

1000001/99998 ∼ 1.000115138
1000031/100001 ∼ 1.000115135

Example 4.2. Find the higher root out of 2001/217 and 2011/2018 .

Solution. Similar to the previous problem, 2001/217 can be written as f17(200) and 2011/2018 is equal to f17(201).
By 3.14, f17 is strictly decreasing in the interval (p,∞). In this case, p ∼ 11.6686. (See 5). Hence, 2001/217 >

2011/2018.

2001/217 ∼ 1.0247
2011/218 ∼ 1.0246

The problems above demonstrate a technique that might be used in general to solve the problem of comparing
two roots of the form a1/(a−k) and b1/(b−k). The next step in this direction would be to find a generalization of the
same, to be able to compare any two positive real roots of form a1/b and c1/d . The following results show that
such generalization is possible. The proofs are routine and hence omitted.
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Definition 4.3. For two real numbers k and k′, let f(k,k′) : (q,q′) → R be a function such that f(k,k′)(x) =

x1/(x+k+(x−1)k′). Here (q,q′) is the real interval, where the term x+ k+(x−1)k′ is positive.

Definition 4.4. For two real numbers k and k′, let g(k,k′) : (q,q′) → R is a function such that g(k,k′)(x) =
x+k+(x−1)k′

x − (k′+1) ln(x).

Theorem 4.5. For two distinct positive real roots a1/b and c1/d there exist some k,k′ such that a1/b = f(k,k′)(a)
and c1/d = f(k,k′)(c). (k,k′) is the solution to the following pair of equations.

a+ x+(a−1) · y = b
c+ x+(c−1) · y = d

which always exists for a ̸= c.

Theorem 4.6. For the function f(k,k′), there exists some p′ ∈ (q,q′) such that,

(i) f(k,k′) is strictly increasing in the interval (q, p′),
(ii) f(k,k′) is strictly decreasing in the interval (p′,q′).

In fact, p′ is either the solution to the equation g(k,k′) = 0 or p′ = q.

The last two theorems can now be used to compare any two positive roots a1/b and c1/d , whenever both of
them lie on the increasing or decreasing side of f(k,k′).

Example 4.7. Find the higher root out of 51/18 and 71/24 .

Solution. First, let’s find the values k,k′ by solving the following pair of equations,

5+ x+(5−1) · y = 18
7+ x+(7−1) · y = 24

This gives k = 5,k′ = 2. Thus, the roots can now be re-written as, 51/18 = 55+5+(5−1)·2 = f(5,3)(5) and 71/24 =

77+5+(7−1)·2 = f(5,3)(7). Now, for f(5,3) the value of p′ ∼ 3.59112. (See 5) Thus by Theorem 4.6, 51/18 > 71/24.

51/18 ∼ 1.0935
71/24 ∼ 1.0845

Examples shown in this section, uses the value of p′, which can be calculated by solving the equation g(k,k′) = 0
whenever p′ ̸= q′. If there exists an efficient method of finding p′, then the technique of solving root inequalities
demonstrated in this section might give better results than conventional methods. We conclude this section, by
formally stating this as a problem.

Problem 4.8. Find an efficient algorithm that can be used to calculate the value of p′, as defined in Theorem 4.6,
with accuracy of at least n digits after decimal. In particular, such an algorithm will be considered efficient, if it
has better time complexity than that of Newton-Raphson method.

5 Conclusion

Solving root inequalities using the properties of f(k,k′) might be useful in systems with limited processing power
but enough memory. Embedded systems and IoT devices are a few examples of this. The approach hints at the
possibility of building proper algorithms for the applied purpose. Lastly, a solution to Problem 4.8 might put this
approach in a more significant position compared to conventional methods of determining roots.
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k p
1 3.59112
2 4.31914
3 4.97063
4 5.57239
5 6.13883
6 6.67678
7 7.19322
8 7.69148
9 8.17436
10 8.64403

k p
11 9.10213
12 9.55001
13 9.98877
14 10.4193
15 10.84237
16 11.25862
17 11.6686
18 12.0728
19 12.47164
20 12.86548

k p
21 13.25466
22 13.63946
23 14.02015
24 14.39697
25 14.77012
26 15.1398
27 15.50619
28 15.86945
29 16.22973
30 16.58715

k p
31 16.94186
32 17.29396
33 17.64356
34 17.99076
35 18.33567
36 18.67835
37 19.0189
38 19.35739
39 19.6939
40 20.02849

k p
41 20.36122
42 20.69216
43 21.02136
44 21.34887
45 21.67475
46 21.99905
47 22.32181
48 22.64307
49 22.96288
50 23.28127

Table 1: p values from 1 to 50.

k k′ p′

1 1 2.71828
1 2 2.36026
1 3 2.15554
1 4 2.01963
1 5 1.92133
1 6 1.84613
1 7 1.78627
1 8 1.73722
1 9 1.69609
1 10 1.66099

k k′ p′

2 1 3.18097
2 2 2.71828
2 3 2.45511
2 4 2.28107
2 5 2.15554
2 6 2.05972
2 7 1.98361
2 8 1.92133
2 9 1.86919
2 10 1.82474

k k′ p′

3 1 3.59112
3 2 3.03396
3 3 2.71828
3 4 2.5101
3 5 2.36026
3 6 2.24609
3 7 2.15554
3 8 2.08153
3 9 2.01963
3 10 1.96691

k k′ p′

4 1 3.96731
4 2 3.32232
4 3 2.95801
4 4 2.71828
4 5 2.54604
4 6 2.41498
4 7 2.31114
4 8 2.22637
4 9 2.15554
4 10 2.09524

k k′ p′

5 1 4.31914
5 2 3.59112
5 3 3.18097
5 4 2.91157
5 5 2.71828
5 6 2.57138
5 7 2.45511
5 8 2.36026
5 9 2.28107
5 10 2.2137

Table 2: p′ values for k ∈ [1,5] and k′ ∈ [1,10]
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