
JOURNAL OF THE ASSAM ACADEMY OF MATHEMATICS, 2024:01
Journal homepage: jaam.aamonline.org.in

Further congruences for (4,8)-regular bipartition
quadruples modulo powers of 2
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Abstract: We prove some new congruences modulo powers of 2 for (4,8)-regular bipartition
quadruples, using an algorithmic approach.
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A partition λ of n is a non-negative sequence of integers λ1 ≥ λ2 ≥ ·· · ≥ λk such that the λi’s sum up to n.
A partition ℓ-tuple of n is an ℓ tuple of partitions (Λ1,Λ2, . . . ,Λℓ) such that the sum of all the parts of Λi is n.
Recently, Nayaka [1] introduced (s, t)-regular bipartition quadruples of a positive integer n, denoted by BQs,t to
be the numbers given by the generating function

∑
n≥0

BQs,t(n)qn =
(qs;q2)4

∞(q
t ;qt)4

∞

(qs;qs)8
∞

,

where
(a;q)∞ := ∏

n≥0
(1−aqn), |q|< 1.

Nayaka proved several congruence properties satisfied by BQs,t(n) for different values of (s, t). He proved the
results using elementary q-series techniques. The aim of this short note is to extend Nayaka’s list of congruences
for (s, t) = (4,8) using an algorithmic approach. We use Smoot’s [5] implementation of an algorithm of Radu [3]
(which we will describe in the next section) to prove this extended list of congruences. This approach has been
used very recently by the author [4] to extend some other congruences proved by Nayaka and Naika [2].

In this note, we prove the following result.
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Theorem 1. For all n ≥ 0, we have

BQ4,8(4n+2)≡ 0 (mod 4), (1)

BQ4,8(4n+3)≡ 0 (mod 64), (2)

BQ4,8(8n+4)≡ 0 (mod 2), (3)

BQ4,8(8n+6)≡ 0 (mod 8), (4)

BQ4,8(8n+7)≡ 0 (mod 256), (5)

BQ4,8(16n+9)≡ 0 (mod 64), (6)

BQ4,8(16n+13)≡ 0 (mod 512), (7)

BQ4,8(16n+15)≡ 0 (mod 512), (8)

BQ4,8(32n+17)≡ 0 (mod 32), (9)

BQ4,8(32n+21)≡ 0 (mod 256), (10)

BQ4,8(32n+25)≡ 0 (mod 1024), (11)

BQ4,8(32n+29)≡ 0 (mod 1024), (12)

BQ4,8(64n+9)≡ 0 (mod 64), (13)

BQ4,8(64n+33)≡ 0 (mod 16), (14)

BQ4,8(64n+41)≡ 0 (mod 512), (15)

BQ4,8(64n+49)≡ 0 (mod 64), (16)

BQ4,8(64n+57)≡ 0 (mod 4096). (17)

Remark 2. Nayaka [1] had proved the following

BQ4,8(8n+7)≡ 0 (mod 128).

Proof of Theorem 1. To prove Theorem 1, we shall use Radu’s Ramanujan-Kolberg algorithm [3] as implemented
by Smoot [5] for Mathematica, using his package RaduRK. Smoot [5] has detailed instructions on its installation
and usage. First we invoke the package in Mathematica as follows:

In[1] := <<RaduRK’

Before running the program, we need to set two global variables q and t:

In[2] := {SetVar1[q], SetVar2[t]}

The proof of all the congruences are similar, so we shall only prove (5) in details, which can be proved by the
procedure call

In[1] := RK[4, 8, {-8, 0, 4, 4}, 8, 7].
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After a few seconds, we get the proof in the form of the following output.

Out[1] :=

N: 4

{M,(rδ )δ |M}: {8,{−8,0,4,4}}

m: 8

Pm,r(j): {7}

f1(q):
(q;q)66

∞

(
q2;q2

)10
∞

q8 (q4;q4)76
∞

t:
(q;q)8

∞

q(q4;q4)8
∞

AB: {1}

{pg(t): g∈AB}
{

21760t8 +23318528t7 +5439488000t6

+517291900928t5 +25120189972480t4

+681697209221120t3 +10484942882471936t2

+85568392920039424t +288230376151711744}

Common Factor: 256

The interpretation of this output is as follows.

The first entry in the procedure call RK[4, 8, {-8, 0, 4, 4}, 8, 7] corresponds to specifying N = 4,
which fixes the space of modular functions

M(Γ0(N)) := the algebra of modular functions for Γ0(N).

The second and third entry of the procedure call RK[4, 8, {-8, 0, 4, 4}, 8, 7] gives the assignment
{M,(rδ )δ |M}= {8,(−8,0,4,4)}, which corresponds to specifying (rδ )δ |M = (r1,r2,r4,r8) = (−8,0,4,4), so that

∑
n≥0

BQ4,8(n)qn = ∏
δ |M

(qδ ;qδ )rδ
∞ =

(q4;q4)4(q8;q8)4

(q;q)8 .

The last two entries of the procedure call RK[4, 8, {-8, 0, 4, 4}, 8, 7] corresponds to the assignment
m = 8 and j = 7, which means that we want the generating function

∑
n≥0

BQ4,8(mn+ j)qn = ∑
n≥0

BQ4,8(8n+7)qn.

So, Pm,r( j) = P8,r(7) with r = (−8,0,4,4).

The output Pm,r( j) := P8,(−8,0,4,4)(7) = {7} means that there exists an infinite product

f1(q) =
(q;q)66

∞

(
q2;q2

)10
∞

q8 (q4;q4)76
∞

,

such that
f1(q) ∑

n≥0
BQ4,8(8n+7)qn ∈ M(Γ0(4)).

JOURNAL OF THE ASSAM ACADEMY OF MATHEMATICS, 2024:01 3

http://jaam.aamonline.org.in/ojs


MANJIL P. SAIKIA

Finally, the output

t =
(q;q)8

∞

q(q4;q4)8
∞

, AB = {1}, and {pg(t): g∈ AB},

presents a solution to the question of finding a modular function t ∈ M(Γ0(4)) and polynomials pg(t) such that

f1(q) ∑
n≥0

BQ4,8(8n+7)qn = ∑
g∈AB

pg(t) ·g

In this specific case, we see that the singleton entry in the set {pg(t): g∈ AB} has the common factor 256, thus
proving equation (5).

The other congruences in Theorem 1 can be proved in a similar way. For instance, to prove (17) we run the
procedure call RK[4, 8, {-8, 0, 4, 4}, 64, 57]. The output file generated by Mathematica which proves
all the congruences in Theorem 1 can be downloaded from https://manjilsaikia.in/publ/mathematica/

BQ-4-8.nb.

For more details on the steps described above, one can consult Radu [3] and Smoot [5].
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