Formal triangular matrix ring with nil clean index 4

Jayanta Bhattacharyya Dhiren Kumar Basnet

Received 19 January 2023; Revised 27 November 2023; Accepted 29 November 2023; Published 31 December 2023

Abstract: For an element $a \in R$, where *R* is an associative ring with unity. Let $\eta(a) = \{e \in R \mid e^2 = e \text{ and } a - e \in \operatorname{nil}(R)\}$. The nil clean index of *R*, denoted by Nin(*R*), is defined by [1]

$$\operatorname{Nin}(R) = \sup\{ \mid \eta(a) \mid : a \in R \}.$$

In this article we have characterized formal triangular ring $\begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$ with nil clean index 4.

AMS Classification: 2010 Mathematics Subject Classification: 16U99

Key words and phrases: Nil clean ring, nil clean index.

1 Introduction

Throughout this article *R* denotes a associative ring with unity. The set of nilpotents and set of idempotents are denoted by nil(R) and idem(R) respectively. The cyclic group of order *n* is denoted by C_n and |S| denotes the cardinality of the set *S*. For an element $a \in R$, if $a - e \in nil(R)$ for some $e \in idem(R)$, then a = e + (a - e) is said to be a nil clean expression of *a* in *R* and *a* is called a nil clean element [3, 2]. The ring R is called nil clean if each of its elements is nil clean.

For an element $a \in R$, let $\eta(a) = \{e \in R \mid e^2 = e \text{ and } a - e \in \operatorname{nil}(R)\}$. The nil clean index of *R*, denoted by $\operatorname{Nin}(R)$, is defined by $\operatorname{Nin}(R) = \sup\{|\eta(a)| : a \in R\}$ [1]. Characterization of arbitrary ring with nil clean indices 1, 2 and certain sufficient conditions for a ring to be of nil clean index 3 are given in [1]. In this article we have characterized formal triangular ring $\begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$ with nil clean index 4, here *A* and *B* are rings and *M* is a A - B-bimodule. Following results about nil clean index will be used in this article.

Lemma 1.1 (1, Lemma 2.5). Let $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$, where A and B are rings, and ${}_{A}M_{B}$ is a bimodule. Let Nin(A) = n and Nin(B) = m. Then

- 1. $Nin(R) \ge |M|$.
- 2. If $(M,+) \cong C_{p^k}$, where *p* is a prime and $k \ge 1$, then $Nin(R) \ge n + \lceil \frac{n}{2} \rceil (|M|-1)$, where $\lceil \frac{n}{2} \rceil$ denotes the least integer greater than or equal to $\frac{n}{2}$.

3. Either $Nin(R) \ge nm + |M| - 1$ or $Nin(R) \ge 2nm$.

Lemma 1.2 (1, Lemma 2.6). Let $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$, where A and B are rings, ${}_AM_B$ is a bimodule with $(M, +) \cong C_{2^r}$. Then $Nin(R) = 2^r Nin(A)Nin(B)$.

Theorem 1.3 (1, Theorem 4.1). Nin(R) = 2 if and only if $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$, where Nin(A) = Nin(B) = 1 and ${}_{A}M_{B}$ is a bimodule with |M| = 2.

Theorem 1.4 (1, Proposition 4.2). If $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$, where Nin(A) = Nin(B) = 1 and $_AM_B$ is a bimodule with |M| = 3 then Nin(R) = 3.

2 Main result

Theorem 2.1. Let $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$, where A and B are rings, ${}_AM_B$ is a non trivial bimodule. Then Nin(R) = 4 if and only if one of the following holds:

- (1) $(M,+) \cong C_2$ and Nin(A) Nin(B) = 2.
- (2) $(M, +) \cong C_4$ and Nin(A) = Nin(B) = 1.
- (3) $(M,+) \cong C_2 \oplus C_2$ and one of the following
 - (*a*) Nin(A) = Nin(B) = 1.
 - (b) $\operatorname{Nin}(A) = 1$, $B = \begin{pmatrix} S & W \\ 0 & T \end{pmatrix}$, Where $\operatorname{Nin}(S) = \operatorname{Nin}(T) = 1$ and |W| = 2, and $eM(1_B f) + (1_A e)Mf \neq 0$ for all $e^2 = e \in A$ and $f \in \eta(b)$, where $b \in B$ with $|\eta(b)| = 2$.
 - (c) $\operatorname{Nin}(B) = 1$, $A = \begin{pmatrix} S & W \\ 0 & T \end{pmatrix}$, Where $\operatorname{Nin}(S) = \operatorname{Nin}(T) = 1$ and |W| = 2, and $eM(1_B f) + (1_A e)Mf \neq 0$ for all $e^2 = e \in B$ and $f \in \eta(a)$, where $a \in A$ with $|\eta(a)| = 2$.

Proof : (\Leftarrow) If (1) holds then by **Lemma 1.2**, we get Nin(R) = 4. If (2) holds then Nin(R) $\ge |M| = 4$, Now, for any $\alpha = \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \in R$.

$$\eta(\alpha) = \left\{ \begin{pmatrix} e & w \\ 0 & f \end{pmatrix} \in \mathbf{R} : e \in \eta(a), f \in \eta(b), w = ew + fw \right\}.$$

Because |M| = 4, $|\eta(a)| \le 1$ and $|\eta(b)| \le 1$, it follows that $|\eta(\alpha)| \le 4$. Hence Nin(R) = 4. (3) (*a*) Similar to case (2).

Proof of 3(*b*) and 3(*c*) are identical, hence proof is given only for 3(*c*). Suppose (3)(*c*) holds, clearly $Nin(R) \ge |M| = 4$. Let $\alpha = \begin{pmatrix} a & w \\ 0 & b \end{pmatrix} \in R$. We show that $|\eta(\alpha)| \le 4$ and hence Nin(R) = 4 holds. Since Nin(B) = 1, we can assume that $\eta(b) = \{f_0\}$. Then as above we have

$$\boldsymbol{\eta}(\boldsymbol{\alpha}) = \left\{ \left(\begin{array}{cc} e & z \\ 0 & f_0 \end{array} \right) \in \boldsymbol{R} : e \in \boldsymbol{\eta}(a), z = ez + zf_0 \right\}.$$

If $|\eta(a)| \le 1$, then $|\eta(\alpha)| \le |\eta(a)| \cdot |M| \le 4$. So we can assume that $|\eta(a)| = 2$. Write $\eta(a) = \{e_1, e_2\}$. Thus $\eta(\alpha) = T_1 \bigcup T_2$, where

$$T_i = \left\{ \left(\begin{array}{cc} e_i & z \\ 0 & f_0 \end{array} \right) \in R : (1_A - e_i)z = zf_0 \right\} \qquad (i = 1, \ 2)$$

Since $\eta(1_A - a) = \{1_A - e_1, 1_A - e_2\}$, the assumption (3)(*c*) shows that $\{z \in M : (1_A - e_i)z = zf_0\}$ is a proper subgroup of (M, +); so $|T_i| \le 2$ for i = 1, 2. Hence $|\eta(\alpha)| = |T_1| \cdot |T_2| \le 4$.

(⇒) Suppose Nin(R) = 4. Then 2 ≤ |M| ≤ Nin(R) = 4. If |M| = 2 then Nin(A) Nin(B) = 2 by Lemma 1.2, so (1) holds.

Suppose |M| = 3, then we have by **Lemma 1.1** Nin $(A) + |M| - 1 \le Nin(R)$, showing Nin $(A) \le 2$, similarly Nin $(B) \le 2$. But Nin(A) = 2 = Nin(B) will give Nin $(R) \ge 6$ by **Lemma 1.1** and Nin(A) = Nin(B) = 1 will give Nin(R) = 3 by **Theorem 1.4**. Hence last possibility is Nin(A) Nin(B) = 2, so without loss of generality we assume that Nin(A) = 2 and Nin(B) = 1. Write $(M, +) = \{0, x, 2x\}$. Now by **Theorem 1.3** we have $A = \begin{pmatrix} T & N \\ 0 & S \end{pmatrix}$, where T & S are rings, $_TN_S$ is bimodule with Nin(T) = Nin(S) = 1 and |N| = 2. Note that for $e \in idem(A)$, $ex \in \{0, x\}$, $x \in M$, as if ex = 2x, we have 2x = ex = e(ex) = e(2x) = e(x+x) = ex + ex = 2x + 2x = 4x = x which is not true.

Now Let
$$a = \begin{pmatrix} 1_T & 0 \\ 0 & 0 \end{pmatrix} \in A$$
 such that
 $a = \begin{pmatrix} 1_T & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1_T & y \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -y \\ 0 & 0 \end{pmatrix}$. Let us denote,
 $e_1 = \begin{pmatrix} 1_T & 0 \\ 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 1_T & y \\ 0 & 0 \end{pmatrix}, n_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $n_2 = \begin{pmatrix} 0 & -y \\ 0 & 0 \end{pmatrix}$,

where e_1 , $e_2 \in idem(A)$ & n_1 , $n_2 \in nil(R)$. Now we have following cases:

Case I: Let $e_1 x = e_2 x = 0$ then we have an element $\beta = \begin{pmatrix} (1_A - a) & 0 \\ 0 & 0 \end{pmatrix} \in R$ such that

$$\beta = \begin{pmatrix} (1_A - e_1) & z \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -n_1 & -x \\ 0 & 0 \end{pmatrix} \qquad \forall z \in M$$
$$= \begin{pmatrix} (1_A - e_2) & z \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -n_2 & -x \\ 0 & 0 \end{pmatrix} \qquad \forall z \in M$$

are six nil clean expressions for β , which implies $|\eta(\beta)| \ge 6$, that is Nin(R) ≥ 6 , which is not possible.

Case II: Let $e_1x = e_2x = x$ then we have an element $\alpha = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in R$ such that

$$\alpha = \begin{pmatrix} e_1 & z \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} n_1 & -x \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} e_2 & z \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} n_2 & -x \\ 0 & 0 \end{pmatrix}$$

$$\forall z \in M$$

are six nil clean expressions for α , which implies $|\eta(\alpha)| \ge 6$, that is Nin $(R) \ge 6$, which is also not possible.

Case III: Let $e_1x = x$ and $e_2x = 0$, then we have $e_1 - e_2 x = x$. Let $j = e_1 - e_2$, then clearly $j \in nil(A)$, we have $jx = x \Rightarrow (1_A - j)x = 0 \Rightarrow x = 0$, (as (1 - j) is an unit in A), which is not possible.

Case IV: Let $e_1x = 0$ and $e_2x = x$, as in case III, we get a contradiction. Hence if $M \cong C_3$, Nin(R) is never 3. Suppose |M| = 4. If $(M, +) \cong C_4$, then Nin(A) Nin(B) = 1 by Lemma 1.2. So (2) holds. Let $(M, +) \cong C_2 \oplus C_2$. Since Nin(R) = 4, by Lemma 1.1 we have Nin(A) Nin(B) ≤ 2 . If Nin(A) Nin(B) = 1 then (3)(a) holds. If Nin(A) Nin(B) = 2, without loss of generality we can assume Nin(A) = 2 and Nin(B) = 1. So by **Theorem 1.3**, we have $A = \begin{pmatrix} S & W \\ 0 & T \end{pmatrix}$ where Nin(S) = Nin(T) = 1, and |W| = 2. To complete the proof suppose in contrary that $eM(1_B - f) + (1_A - e)Mf = 0$ for some $f^2 = f \in B$ and $e \in \eta(a)$, where $a \in A$ with $|\eta(a)| = 2$. Then ew = wf for all $w \in M$. It is easy to check that $\eta(a) = \{e, e+j\}$ where $j = \begin{pmatrix} 0 & w_0 \\ 0 & 0 \end{pmatrix} \in A$ with $0 \neq w_0 \in W$. Thus, for $\gamma := \begin{pmatrix} 1_A - e & 0 \\ 0 & -e \end{pmatrix}$,

$$\eta(\gamma) \supseteq \left\{ \begin{pmatrix} 1_A - e & 0 \\ 0 & f \end{pmatrix}, \begin{pmatrix} 1_A - (e+j) & 0 \\ 0 & f \end{pmatrix}, \begin{pmatrix} 1_A - e & w \\ 0 & f \end{pmatrix} : w \in M \right\}.$$

So $|\eta(\gamma)| \ge 5$, a contradiction. So (3)(c) holds, similarly (3)(b) can be proved.

Acknowledgments

The authors are grateful to the anonymous reviewer.

References

- D. K. Basnet and J. Bhattacharyya. Nil clean index of rings. *International Electronic Journal of Algebra*, 15:145–156, 2014.
- [2] A. J. Diesl. Classes of Strongly Clean Rings. Ph D. Thesis, University of California, Berkeley, 2006. 1
- [3] A. J. Diesl. Nil clean rings. Journal of Algebra, 383:197-211, 2013. 1
- [4] W. K. Nicholson. Lifting idempotents and exchange rings. *Transactions of the American Mathematical Society*, 229:269–278, 1977.

AUTHORS

Jayanta Bhattacharyya Department of Mathematics, Joya Gogoi College, Khumtai, Golaghat-78519, Assam, India. Email: jayanta [dot] jgc [at] gmail [dot] com

Dhiren Kumar Basnet Department of Mathematical Sciences, Tezpur University, Napaam, Tezpur-784028, Assam, India. Email: dbasnet [at] tezu [dot] ernet [dot] in

ABOUT THE AUTHORS

- JAYANTA BHATTACHARYYA is an Assistant Professor in the Department of Mathematics of Joya Gogoi College, Assam. He has a PhD in mathematics from Tezpur University (India).
- DHIREN KUMAR BASNET is a Professor in the Department of Mathematical Sciences of Tezpur University, Assam. He has a long and disntinguished career in teaching, research and outreach activities in mathematics.

DOWNLOADED FROM JAAM.AAMONLINE.ORG.IN PUBLISHED BY THE ASSAM ACADEMY OF MATHEMATICS