On the number of partitions of n whose product of the summands is at most n

Pankaj Jyoti Mahanta

Received 23 July 2022; Revised 23 September 2022; Accepted 10 October 2022; Published 18 October 2022

Abstract

We prove an explicit formula to count the partitions of n whose product of the summands is at most n. In the process, we also deduce a result to count the multiplicative partitions of n.

সাবাংশ: n ব যিসমূহ বিভাজনব অংশসমূহব পূবণফল অতি বেছি n হয়, তাব মুঠ সংখ্যা গণনা কবিব পবা এটা স্পষ্ট সূত্র আমি প্রমাণ কবোঁ। এই প্রক্রিয়াটোত আমি n ব গুণকীয় বিভাজনসমূহ গণনা কবিব পবা এটা ফলাফনো নির্ণয় কবোঁ।

AMS Classification: 11P81, 05A17.
Key words and phrases: partition function, product of summands, multiplicative partition, unordered factorization, floor function.

1 Introduction

A partition of a non-negative integer n is a representation of n as a sum of unordered positive integers which are called parts or summands of that partition. The number of partitions of n is denoted by $p(n)$. For example, the partitions of 7 are:

$$
\begin{aligned}
& 1+1+1+1+1+1+1 \\
& 1+1+1+1+1+2,1+1+1+1+3,1+1+1+4,1+1+5,1+6,7 \\
& 1+1+1+2+2,1+1+2+3,1+2+4,2+5,1+3+3,3+4 \\
& 1+2+2+2,2+2+3
\end{aligned}
$$

So, $p(7)=15$.
Many restricted partitions such as partitions with only odd summands, partitions with distinct summands, partitions whose summands are divisible by a certain number, partitions with restricted number of summands, partitions with designated summands, etc. have been studied over the last two and half centuries. The partitions of n whose product of the summands is at most n are another kind of restricted partition. We denote the total number of such partitions of n by $p_{\leq n}(n)$. Also, we denote by $p_{=n}(n)$ the number of partitions of n whose product of the summands is equal to n. Similarly we use the notations $p_{<n}(n), p_{\geq n}(n)$, etc.

The value of the product of the summands of a partition depends on the summands of that partition which are greater than one. We call these summands the non-one summands or non-one parts. Let n be a positive integer and the canonical decomposition of n as a product of distinct primes be

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}},
$$

where $\alpha_{i} \in \mathbb{N}$ for all $i=1,2, \ldots, r$.
As a consequence of the fundamental theorem of arithmetic, we have the following proposition.
Proposition 1.1. The product of the summands of a partition of n is equal to n if and only if

1. each summand is a divisor of n, and
2. p_{i} appears as a factor of the summands exactly α_{i} times, for all $i=1,2, \ldots, r$.

Proposition 1.2. Let the product of the summands of a partition of n be n, and each non-one summand of the partition has one prime factor. The total number of such partitions of n is

$$
\prod_{i=1}^{r} p\left(\alpha_{i}\right)
$$

Proof. Let $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{t}$ be a partition of α_{1}. Then,

$$
p_{1}^{\lambda_{1}}+p_{1}^{\lambda_{2}}+\cdots+p_{1}^{\lambda_{t}} \leq p_{1}^{\alpha_{1}},
$$

since, for all positive integers $a, b>1$, we have $a+b \leq a b$ and the equality holds only for $a=b=2$. So, for any positive integer $c>1$, we have $a+b+c \leq a b+c<a b c$, and so on.

Here, each non-one summand of a partition of n has only one prime factor. So, by the Proposition 1.1, we get the result.

A multiplicative partition of a positive integer n is a representation of n as a product of unordered positive non-one integers. The multiplicative partition function was introduced by MacMahon [6], [7] in 1923. Since then many properties of this function have been studied. Some works can be found in [1], [2], [3], [4], [5] and [8]. $p_{=n}(n)$ is equal to the total number of multiplicative partitions of n. In this paper, we introduce and prove formulas for $p_{\leq n}(n)$ and $p_{<n}(n)$, and using both we find $p_{=n}(n)$.

2 Formulas for $p_{\leq n}(n), p_{<n}(n)$ and $p_{=n}(n)$

The floor function of x, denoted by $\lfloor x\rfloor$, is the greatest integer less than or equal to x, where x is any real number. In this section this function appears many times.

Theorem 2.1. We have
where $2^{\ell} \leq n<2^{\ell+1}$.
Proof. $1+1+1+\cdots+1$ is the only partition of n where there is no non-one summand. The partitions of n where there is only one non-one summand are

$$
1+\cdots+1+1+2,1+\cdots+1+3, \ldots, 1+1+(n-2), 1+(n-1) \text { and } n .
$$

Pankaj Jyoti Mahanta

So we get $n-1$ partitions whose product of summands $<n$ and one partition whose product of summands $=n$.

Now, we count the partitions where there are only two non-one summands.

$$
\begin{array}{r}
1+\cdots+1+1+2+2,1+\cdots+1+2+3,1+\cdots+2+4, \ldots, 1+2+(n-3), 2+(n-2), \\
1+\cdots+1+3+3,1+\cdots+3+4, \ldots, 1+3+(n-4), 3+(n-3),
\end{array}
$$

and so on.
Here, in the first row, where the initial non-one summand is 2 , the total number of partitions whose product of summands $\leq n$ is $\left\lfloor\frac{n}{2}\right\rfloor-1$. That of second row is $\left\lfloor\frac{n}{3}\right\rfloor-2$. In this way we can count up to the row where initial non-one summand is $\lfloor\sqrt{n}\rfloor$; since $(\lfloor\sqrt{n}\rfloor+1)(\lfloor\sqrt{n}\rfloor+1)>n$. Thus, the total number of such partitions having exactly two non-one summands is

$$
\sum_{i_{1}=2}^{\lfloor\sqrt{n}\rfloor}\left(\left\lfloor\frac{n}{i_{1}}\right\rfloor-i_{1}+1\right)
$$

To see the clear picture, we now count such partitions where there are four non-one summands.

$$
\begin{array}{r}
1+\cdots+1+1+2+2+2+2,1+\cdots+1+2+2+2+3,1+\cdots+2+2+2+4, \ldots, 2+2+2+(n-6), \\
1+\cdots+1+2+2+3+3,1+\cdots+2+2+3+4, \ldots, 2+2+3+(n-7), \\
1+\cdots+1+2+2+4+4, \ldots, 2+2+4+(n-8), \\
\cdots \cdots, \\
\cdots \cdots, \\
1+\cdots+1+2+3+3+3,1+\cdots+2+3+3+4,1+\cdots+2+3+3+5, \ldots, 2+3+3+(n-8), \\
1+\cdots+2+3+4+4,1+\cdots+2+3+4+5, \ldots, 2+3+4+(n-9), \\
1+\cdots+2+3+5+5, \ldots, 2+3+5+(n-10), \\
\cdots \cdots, \\
\cdots, \\
1+\cdots+1+3+3+3+3,1+\cdots+3+3+3+4,1+\cdots+3+3+3+5, \ldots, 3+3+3+(n-9),
\end{array}
$$

and so on.
In the first row, the number of partitions whose product of summands $\leq n$ is $\left\lfloor\frac{n}{2 \cdot 2 \cdot 2}\right\rfloor-1$. So, in the first group of rows, the number of partitions whose product of summands $\leq n$ is

$$
\sum_{i_{3}=2}^{\left\lfloor\sqrt{\frac{n}{2 \cdot 2}}\right\rfloor}\left(\left\lfloor\frac{n}{2 \cdot 2 \cdot i_{3}}\right\rfloor-i_{3}+1\right)
$$

In the second group of rows it equals to

$$
\sum_{i_{3}=3}^{\left\lfloor\sqrt{\frac{n}{2 \cdot 3}}\right\rfloor}\left(\left\lfloor\frac{n}{2 \cdot 3 \cdot i_{3}}\right\rfloor-i_{3}+1\right)
$$

When the initial non-one summand is 2 , then we can count up to the partitions where the second non-one summand is $\left\lfloor\sqrt[3]{\frac{\pi}{2}}\right\rfloor$. Thus, when the initial non-one summand is 2 , then the number of partitions whose product of summands $\leq n$ is

$$
\sum_{i_{2}=2}^{\left\lfloor\sqrt[3]{\left.\frac{\pi}{2}\right\rfloor}\right\rfloor} \sum_{i_{3}=i_{2}}^{\sqrt{\frac{n}{2 \cdot i_{2}}}}\left(\left\lfloor\frac{n}{2 \cdot i_{2} \cdot i_{3}}\right\rfloor-i_{3}+1\right)
$$

In this way, we can count up to the group of rows, where the initial non-one summand is $\lfloor\sqrt[4]{n}\rfloor$. Therefore, the total number of such partitions having exactly four non-one summands is

$$
\sum_{i_{1}=2}^{\lfloor\sqrt[4]{n}\rfloor} \sum_{i_{2}=i_{1}}^{\left\lfloor\sqrt[3]{n_{1}}\right.} \sum_{i_{3}=i_{2}}^{\left\lfloor\sqrt{\frac{n}{i_{1} \cdot i_{2}}}\right.}\left(\left\lfloor\frac{n}{i_{1} \cdot i_{2} \cdot i_{3}}\right\rfloor-i_{3}+1\right)
$$

Thus, when there are exactly k non-one summands, then the number of partitions whose product of summands $\leq n$ is

If $2^{\ell} \leq n<2^{\ell+1}$, then a partition of n, whose product of summands is $\leq n$, must have at most ℓ non-one summands. This completes the proof.

Corollary 2.2. We have

$$
p_{\leq n}(n)=p_{<n+1}(n+1) .
$$

Proof. If we observe the expression (2.2), then we see that if the product of the summands is n then n is divisible by $i_{1} i_{2} \cdots i_{k-1}$. So, to find $p_{<n}(n)$, we can take

$$
\left\lfloor\frac{n-1}{i_{1} i_{2} \cdots i_{k-1}}\right\rfloor-i_{k-1}+1,
$$

since $a \nmid n$ implies $\left\lfloor\frac{n}{a}\right\rfloor=\left\lfloor\frac{n-1}{a}\right\rfloor$ for all positive integer a.
Again, when there are exactly k non-one summands, then the product of the summands is n if $\sqrt[k]{n}$ is an integer. Also, if $\sqrt[k]{n}$ is not an integer, then $\lfloor\sqrt[k]{n}\rfloor=\lfloor\sqrt[k]{n-1}\rfloor$. So, to find $p_{<n}(n)$, we can take the value of i_{1} up to $\lfloor\sqrt[k]{n-1}\rfloor$. In this way we get, when there are exactly k non-one summands, then the number of partitions whose product of summands $<n$ is

Now, we get the following two cases.

1. $2^{\ell}<n<2^{\ell+1}$. In this case, $2^{\ell} \leq n-1<2^{\ell+1}$ and a partition of n whose product of summands is $<n$ must have at most ℓ non-one summands.
2. $n=2^{\ell}$. In this case, $2^{\ell-1} \leq n-1<2^{\ell}$ and we must have at most $\ell-1$ non-one summands.

So, combining both cases, we can take the value of k up to s, where $2^{s} \leq n-1<2^{s+1}$. Hence,

$$
\begin{aligned}
& p_{<n}(n)=n-1+\sum_{k=2}^{s} \sum_{i_{1}=2}^{\lfloor\sqrt[k]{n-1}\rfloor} \sum_{i_{2}=i_{1}}^{\left\lfloor\frac{k-1}{\frac{n-1}{i_{1}}}\right\rfloor} \sum_{i_{3}=i_{2}}^{\left\lfloor\frac{k-2}{\frac{n-1}{1 i_{12}}}\right\rfloor} \cdots \sum_{i_{k-1}=i_{k-2}}^{\left\lfloor\sqrt{\frac{n-1}{i_{1} i_{i-i}^{k-2}}}\right\rfloor}\left(\left\lfloor\frac{n-1}{i_{1} i_{2} \cdots i_{k-1}}\right\rfloor-i_{k-1}+1\right) \\
& =p_{\leq n-1}(n-1) \text {. }
\end{aligned}
$$

Corollary 2.3. For $n>1$, we have

$$
p_{=n}(n)=p_{\leq n}(n)-p_{\leq n-1}(n-1) .
$$

Corollary 2.4. If n is a prime, then

$$
p_{\leq n}(n)=p_{\leq n-1}(n-1)+1 .
$$

Proof. If n is a prime, then the product of the summands of any partition of n with more than one non-one summands can not be n. So, from the proof of the Corollary 2.2, we get

$$
\begin{aligned}
p_{\leq n}(n) & =1+n-1+\sum_{k=2}^{s} \sum_{i_{1}=2}^{\lfloor } \sum_{i_{2}=i_{1}}^{\sqrt[k]{n-1}} \sum_{i_{3}=i_{2}}^{\left\lfloor\sqrt[k-1]{\frac{n-1}{i_{1}}}\right.}\left\lfloor\sum_{i_{k-1}=i_{k-2}}^{\left\lfloor\sqrt[k-2]{\frac{n-1}{i_{12}}}\right.}\left(\left\lfloor\frac{n-1}{i_{1} i_{2} \cdots i_{k-1}}\right\rfloor-i_{k-1}+1\right),\right. \\
& =1+p_{\leq n-1}(n-1) .
\end{aligned}
$$

3 Concluding remarks

A few values of $p_{=n}(n), p_{\leq n}(n), p_{\geq n}(n)$ and $p_{>n}(n)$ can be found in the OEIS sequences A001055, A096276, A319005 and A114324 respectively. The Corollary 2.2 implies that the sequence A096276 gives the values of $p_{<n}(n)$ too.

It seems that an explicit formula for $p_{\geq n}(n)$ or $p_{>n}(n)$ in the spirit of Theorem 2.1 can be found. We leave this as an open problem.

Acknowledgments

The author is grateful to Manjil P. Saikia for his helpful comments on an earlier version of the paper. He also thanks the anonymous referee for useful suggestions.

References

[1] Ramachandran Balasubramanian and Florian Luca. On the number of factorizations of an integer. Integers, 11(2):139-143, a12, 2011. 9
[2] E. R. Canfield, Paul Erdős, and Carl Pomerance. On a problem of Oppenheim concerning "Factorisatio Numerorum". J. Number Theory, 17:1-28, 1983. 9
[3] Marc Chamberland, Colin Johnson, Alice Nadeau, and Bingxi Wu. Multiplicative partitions. Electron. J. Comb., 20(2):research paper p57, 9, 2013. 9
[4] Shamik Ghosh. Counting number of factorizations of a natural number. arXiv preprint arXiv:0811.3479, 2008. 9
[5] John F. Hughes and J. O. Shallit. On the number of multiplicative partitions. Am. Math. Mon., 90:468-471, 1983. 9
[6] Percy A MacMahon. Dirichlet series and the theory of partitions. Proc. London Math. Soc., 2(1):404-411, 1924. 9
[7] A Oppenheim. On an arithmetic function. J. London Math. Soc., 1(4):205-211, 1926. 9
[8] A Oppenheim. On an arithmetic function (II). J. London Math. Soc., 1(2):123-130, 1927. 9

AUTHOR

Pankaj Jyoti Mahanta
Gonit Sora, Dhalpur, Assam 784165, India
pankaj [at] gonitsora [dot] com
https://pankajjyoti.com

ABOUT THE AUTHOR

Pankaj Jyoti Mahanta has degrees in mathematics from Dibrugarh University (India) and Tezpur University (India). His research interests are in elementary number theory, integer partitions, q-series and enumerative combinatorics.

